Дешевая-обувь.рф

Особенности термоэластопластов (ТЭП). Термопластичная резина это


Термопластичная эластомерная композиция

Изобретение относится к олефиновым термопластичным эластомерам, получаемым методом «динамической» вулканизации этилен-пропилендиенового или бутадиен-нитрильного каучука с полиолефинами, и может быть использовано в производстве резинотехнических изделий, а также для производства изделий в автомобильной, кабельной, обувной промышленности, товаров бытового назначения. Приготавливают термопластичную эластомерную композицию, содержащую, мас.%: изотактический полипропилен - 20-40, синтетический каучук 44,9-73,2, органический пероксид - 0,2-2,0, минеральное масло 1-10, наполнитель - 0,4-5,0, добавку, улучшающую текучесть расплава, 0,5-1,0, а также эфир 3,5-дитретбутил-4-гидроксифенилпропионовой кислоты и пентаэритрита - Ирганокс 1010, 3,3-тиобисдиоктадециловый эфир пропионовой кислоты - Ирганокс PS 802, 3,5-бис(1,1-диметиэтил)-4-гидрокси-2-2-(3-(3,5-бис(1,1 диметилэтил)-4-гидроксифенил)-1-оксопропил) гидразид-Ирганокс 1024. Композиция содержит полиэтилен низкой плотности с показателем текучести расплава от 7,0 до 100,0 г/10 мин при 190°С и нагрузке 2,16 кг в качестве добавки, улучшающей текучесть расплава. В качестве соагента сшивки она может содержать метакрилат или винилбутират. Технический результат изобретения состоит в повышении поверхностной твердости литьевых изделий, улучшении стойкости к истиранию, снижении царапаемости изделий, 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к олефиновым термопластичным эластомерам (ТЭП), получаемым методом «динамической» вулканизации этилен-пропилен-диенового или бутадиен-нитрильного каучука с полиолефинами. Особенностью ТЭП является возможность их переработки на обычном оборудовании для термопластов без последующей вулканизации и полная утилизация отходов и брака при изготовлении изделий из них. ТЭП обычно применяются взамен резиновых смесей для изготовления изделий в автомобильной, кабельной, обувной промышленности, в производстве резинотехнических изделий, в производстве товаров бытового назначения.

Резиновые смеси, применяемые в настоящее время в различных областях техники, обладают высокой гибкостью и эластичностью. Вместе с тем, резиновые смеси имеют ряд недостатков, основными из которых являются сложность и трудоемкость технологического процесса изготовления изделий при повышенных температурах. Такой процесс является низкопроизводительным и требует применения специального дорогостоящего оборудования. В то же время применение полимерных материалов со свойствами термоэластопластов позволяет существенно интенсифицировать, автоматизировать и сделать безотходной технологию получения гибких деталей из ТЭП на трациционном оборудовании для переработки термопластов.

Известна (Патент РФ №2069217, C 08 L 23/16, C 08 J 3/24, БИ № 32, от 20.11.96) термопластичная эластомерная композиция, состоящая из (А) - полипропилена в количестве 12-39 мас.%, (В) - полиэтилена низкой плотности в количестве 1-8 мас.%, (С) - этилен-пропилен-диенового маслонаполненного каучука в количестве 60-80 мас.%, содержащего 25-150 мас.ч. (м)-масла на 100 мас. ч. каучука, серу и ускорители вулканизации. Получение композиции осуществляют полной динамической вулканизацией смеси (А)+(В)+(С) серой в сочетании с первичным ускорителем из класса тиазолов или сульфенамидов и вторичным из класса тиурамсульфидов, тиокарбонатов или алкилтиофосфатов.

Известная термопластичная эластомерная композиция обладает низкой поверхностной твердостью изделий, стойкостью к истиранию (износу), а также низкой стойкостью к царапанию, что препятствует широкому применению этого материала.

Наиболее близкой к заявленному изобретению является эластомерная композиция (патент США №6417271 B1, C 08 L 83/04, 23/04, 23/10), содержащая этилен-пропилен-диеновый каучук (А), полипропилен изотактический (В), полиорганосилоксан (С), мягчитель - парафиновое масло (D) до 50 частей на 100 частей компонента А, инициатор радикалов - 2,5-Диметил-2,5-ди(трет-бутилперокси)гексан от 0,2 до 3 частей на 100 частей компонента (А), соагент вулканизации - дивинилбензол (F) от 0,1 до 5 частей на 100 частей компонента А, оксид кремния SiO2 (G) от 0,01 до 3 частей на 100 частей компонента А.

Композиция содержит (А) в количестве от 1 до 99 частей, компонента (В) содержит от 1 до 99 частей, содержащая полиорганосилоксана (С) с вязкостью при 25°С, равной 5000 сантистокс, составляет от 0,01 до 2,0 частей на 100 частей компонентов А+В.

Композицию получают с помощью 2-шнекового эструдера (диаметр шнеков 40 мм, отношение длины шнеков к диаметру шнеков равно 47). Впрыск масла производится в середину цилиндра экструдера. Температура цилиндра экструдера составляет 220°С. Из материала, получаемого по патенту №6417271, получают изделия методом литья под давлением при температуре расплава 200-230°С.

Недостатком известной композиции является низкая поверхностная твердость изделия, низкая стойкость к царапанию, а также низкая адгезия лакокрасочных материалов при поверхностном окрашивании изделия, поскольку композиция содержит антиадгезионную добавку - полиорганосилоксан.

Предлагаемое изобретение решает техническую задачу повышения поверхностной твердости литьевых изделий, улучшения стойкости к истиранию, снижения царапаемости изделий.

Указанная задача решается тем, что термопластичная эластомерная композиция, включающая изотактический полипропилен, синтетический каучук, органический пероксид, минеральное масло, наполнитель, согласно изобретению дополнительно содержит эфир - 3,5-дитретбутил-4-гидроксифенилпропионовой кислоты и пентаэритрита - Ирганокс 1010, 3,3-тиобисдиоктадециловый эфир пропионовой кислоты - Ирганокс PS 802, 3,5-бис(1,1-диметилэтил)-4-гидрокси-2-(3-[3,5-бис(1,1диметилэтил)-4-гидроксифенил]-1-оксопропил]гидразид - Ирганокс 1024, добавку, улучшающую текучесть расплава - полиэтилен низкой плотности с показателем текучести расплава от 7 до 100 г/10 мин при температуре 190°С и нагрузке 2,16 кг, в качестве синтетического каучука содержит этилен-пропилен-диеновый или бутадиен-нитрильный каучук, в качестве органического пероксида содержит 2,5-диметил-2,5-ди(трет-бутилперокси)гексан - Луперокс 101 или 1,1-ди (трет-бутилперокси) - 3,3,5-триметилциклогексан - Луперокс 231, в качестве наполнителя содержит смесь карбоната кальция и оксида кремния в соотношении 1:2-2:1 при следующем соотношении компонентов, мас.%:

изотактический полипропилен20,0-40,0
синтетический каучук44,9-73,2
органический пероксид0,2-2,0
минеральное масло1,0-10,0
смесь карбоната кальция и оксида кремния в
соотношении 1:2-2:10,4-5,0
Ирганокс 10100,1-0,2
Ирганокс PS 8020,2-0,5
Ирганокс 10240,2-0,5
полиэтилен низкой плотности с показателем
текучести расплава от 7 до 100,0 г/10 мин
при температуре 190°С и нагрузке 2,16 кг2,0-7,0

Кроме того, композиция дополнительно содержит в качестве соагента сшивки - матакрилат или винилбутират в количестве 0,5-1,0 мас.%.

Предлагаемую композицию (ТЭП) получают методом компаундирования в расплаве в 2-шнековом экструдере при температуре 190-230°С в определенных соотношениях эластомера (каучука) и термопласта с одновременным проведением вулканизации фазы каучука. Полученные этим методом термоэластопласты легко перерабатываются по безотходной технологии переработки термопластов на типовом оборудовании. Компоненты ТЭПа могут быть введены в нее как на стадии первичной грануляции полипропилена-порошка, так и в гранулированный полипропилен, а также при первичной грануляции (обработке) каучука или полиэтилена.

Для получения ТЭП по изобретению можно использовать полипропилен изотактический-гомополимер пропилена, например, Бален марок 01030, 01060, 01080 по ТУ 2211-020-00203521-96 (изготовитель ОАО «Уфаоргсинтез», г.Уфа), этилен-пропилен-диеновый каучук, например, марок СКЭПТ-40, СКЭПТ-50, СКЭПТ-60, СКЭПТ-70 по ТУ 38.103252-92 (изготовитель ОАО «Уфаоргсинтез» г.Уфа) в чистом виде или в виде концентратов на основе полипропилена вышеуказанных марок, полиэтилена низкой плотности, например, марок 16803-070 по ГОСТ 16337-77. В качестве минерального (нефтяного масла) можно применять, например, индустриальное масло марок И-20, И-40А по ГОСТ 20799-88, трансформаторное масло по ГОСТ 982-80, парфюмерное масло по ГОСТ 4225-76, вазелиновое масло по ОСТ 38.0156-79. В качестве карбоната кальция можно применять мел природный, обогащенный по ГОСТ 12085-73, или мел, химически осажденный по ГОСТ 8253-79, или их аналоги. В качестве оксида кремния можно использовать белую сажу марки БС-100 или БС-120 по ГОСТ 18307-78 или аэросил марки А-175, А-300 или А-380 по ГОСТ 14922-77.

В качестве пероксида можно использовать органические перекиси, например 2,5-диметил-2,5-ди(трет-бутилперокси)гексан под торговой маркой Луперокс 101 (фирма «АТОФИНА», Франция) или 1,3-1,4-бис(трет-бутилперокси-изопропил) бензол под торговой маркой Перкадокс 14 (фирма «AKZO-NOBEL», Голландия), пероксид дитретичного бутила, под торговой маркой Триганокс «В» (фирма «AKZO-NOBEL», Голландия), 1,1-ди(трет-бутилперокси)-3,3,5-триметилциклогексан под торговой маркой Луперокс 231 (фирма «АТОФИНА», Франция). Пероксиды могут быть использованы как в чистом-концентрированном виде, так и разбавленными - на носителях. Носителями могут быть жидкие вещества - масла и всевозможные растворители и разбавители, а также твердые сыпучие продукты - порошки и гранулы. Применяемые по данной заявке добавки: стабилизаторы, пероксиды, масло, наполнители, соагенты сшивки можно применять как в чистом виде, так и в смеси с другими компонентами заявки, входящими в термоэласто-пласт.

В композицию могут быть введены также целевые добавки, например, концентраты пигментов, наполнители, светостабилизаторы, соагенты вулканизации, смазки, антипирены, вспенивающие агенты, антибактерицидные добавки и др.

Одновременно введение синергической смеси наполнителей (карбонат кальция+оксид кремния) улучшает адгезию лакокрасочных материалов при поверхностном окрашивании изделий из термоэластопласта, что особенно важно для наружных (бамперных) и внутренних (салонных) деталей автомобилей и т.д.

Композицию согласно изобретению можно перерабатывать в изделия методом литья под давлением, экструзии, прессования, каландрования на типовом оборудовании для переработки пластмасс.

Приводимые ниже примеры иллюстрируют, но не ограничивают изобретение.

Пример 1

Термоэластопласт изготавливают на 2-шнековом экструдере (диаметр шнеков 46 мм, отношение длины шнеков к диаметру шнеков равно 42) марки NR II-46SG (фирма «FREESIA MACROSS CORPARATION», Япония) при скорости вращения шнеков 300 об/мин и температуре по зонам 100-230°С.

Состав композиции следующий, мас.%:

Полипропилен изотактический марки 0103030,0
Этилен-пропилен-диеновый каучук марки СКЭПТ-5065,3
Полиэтилен низкой плотности марки 11503-0702,0
Органическая перекись-Луперокс 1011,0
Индустриальное масло И-40А1,0
Ирганокс 10100,1
Ирганокс PS 8020,3
Ирганокс МД 10240,3

В зону питания экструдера непрерывно дозировали смесь, состоящую из полипропилена, измельченного (гранулированного) каучука, полиэтилена, перекиси и смеси стабилизаторов. Предварительно смесь компонентов готовили в тихоходном смесителе путем одновременной загрузки всех вышеприведенных полимеров и добавок. В экструдере NR II-46SG загруженная смесь непрерывно перемешивается, гомогенизируется, расплавляется и выдавливается через фильеру в виде жгутов в водяную ванну, где жгуты охлаждаются и протягиваются с помощью вращающихся валов, сушатся и режутся ножами на гранулы размерами 2-5 мм.

Пример 2

Термоэластопласт получали аналогично примеру 1, но в качестве эластомера использовали бутадиен-нитрильный каучук. Состав композиции приведен в таблице 1.

Пример 3-6

Термоэластопласт получали аналогично примеру 1. Отличие состоит в том, что в состав композиций дополнительно ввели смесь наполнителей оксида кремния и карбоната кальция в соотношении 1:1. Кроме этого, изменяли содержание пероксида Луперокс 101. В зону питания экструдера непрерывно дозировали смесь, состоящую из полипропилена, гранулированного каучука, полиэтилена низкой плотности, пероксида, наполнителей и минерального масла согласно рецептуре таблицы 1. В 4-ю зону экструдера непрерывно дозировали смесь, состоящую из стабилизаторов Ирганокс 1010, Ирганокс PS 802, Ирганокс 1024. В экструдере происходят процессы непрерывного смешения, плавления, гомогенизации расплава и выдавливания расплавленной массы. Расплав из экструдера непрерывно выдавливается через фильеру в виде жгутов, охлаждаются в ванне с водой, сушатся потоком сухого воздуха и жгуты режутся вращающимися ножами на гранулы размерами 2-5 мм. Состав композиций приведен в таблице 1.

Пример 7-8

По примеру 3-6 готовили термоэластопласт, состав которого аналогичен примеру 3-6 и приведен в таблице 1. Отличие состоит в том, что изменили соотношение оксид кремния: карбонат кальция =1:2. В состав термоэластопласта ввели соагент сшивки - метакрилат или винилбутират. Полный состав композиций приведен в таблице 1.

Пример 9-10

По примеру 3-6 готовили термоэластопласт, состав которого аналогичен примеру 3-6 и приведен в таблице 1. Отличие состоит в том, что в композицию №9 ввели только карбонат кальция без оксида кремния, а в композицию №10 добавили лишь оксид кремния без карбоната кальция.

Пример 11-12

По примеру 3-6 готовили термоэластопласт, состав которого аналогичен примеру 3-6 и приведен в таблице 1. Отличие состоит в том, что заменили Луперокс 101 на 1,1-ди(трет-бутилперокси)-3,3,5-триметилциклогексан - Луперокс 231

Пример 13-14

По примеру 3-6 готовили термоэластопласт, состав которого аналогичен примеру 3-6 и приведен в таблице 1. Отличие состоит в том, что в примере 13 увеличили общее содержание смеси наполнителей до 5,0 мас.%, в то время как в примере 14 общее содержание смеси составляет 1,0 мас.%.

Пример 15

По примеру 3-6 готовили термоэластопласт, состав которого аналогичен примеру 3-6 и приведен в таблице 1. Отличие состоит в том, что содержание пероксида 1,1-ди(трет-бутилперокси)-3,3,5-триметилциклокегсан - Луперокс 231 снизили до 0,2 мас.%.

Пример 16

По примеру 3-6 готовили термоэластопласт, состав которого агалогичен примеру 3-6 и приведен в таблице 1. Отличие состоит в том, что общее содержание смеси наполнителей взято в минимальном количестве, а именно 0,4 мас.%.

Пример 17

По примеру 16 готовили термоэластопласт, состав которого аналогичен примеру 16 и приведен в таблице 1. Отличие состоит в том, что общее содержание смеси наполнителей взято в максимальном количестве, т.е. 6 мас.%.

Пример 18

Получали композицию по примеру №2 (таблица 1) из патента №6417271, США.

Из гранул ТЭПа методом литья под давлением при температуре 210-230°С и удельном давлении 78,5 МПа изготовили стандартные образцы в виде лопаток, брусков и кружков для испытаний. Состав композиций 1-17 приведен в таблице 1. Состав композиции прототипа приведен также в таблице 1 (пример 18).

Композиции ТЭП испытывали по следующим методикам.

1. Прочность при разрыве и относительное удлинение при разрыве определяли по ГОСТ 11262-80 при температуре окружающей среды 23°С. Образцы получали литьем под давлением при температуре 200-230°С.

2. Показатель текучести расплава (ПТР) композиций определяли по ГОСТ 11645-73 при температуре 230°С и нагрузке 2,16 кг.

3. Абразивный износ ТЭП определяли по ГОСТ 426-77 «Резина. Метод определения сопротивления истиранию при скольжении».

4. Стойкость к царапанию оценивали визуально по 4-балльной системе. Методика описана в патенте 6417271, США. Согласно указанной методике на образец ТЭП в виде листа с высоты 50 мм сбрасывали металлический клин длиной 10 мм, толщиной 1 мм. Вес клина - 300 г. По величине образующейся царапины на поверхности листа судят о стойкости ТЭП к царапанию. Оценивают царапаемость ТЭП по четырехбалльной шкале: очень хорошая стойкость - 1 балл, хорошая стойкость - 2 балла, хорошая стойкость, но имеются повреждения - 3 балла, имеются существенные (значительные) повреждения - 4 балла.

5. Температуру размягчения по Вика определяли по ASTM-D 1525 на прессованных образцах.

6. Диспергируемость компонента (С) оценивали по методике патента 6417271, США. О диспергируемости наполнителей судили также аналогично. Согласно указанной методике качество поверхности ТЭПа оценивали визуально и ввели следующие критерии диспергируемости:

Очень хорошая диспергируемость1 балл
Хорошая диспергируемость2 балла
Хорошая диспергируемость, однако наблюдается
агрегирование компонента (С) или наполнителей3 балла
Агрегирование и существенные дефекты поверхности4 балла

7. Податливость при нажатии пальцем (органолептический тест) при сухой поверхности образца и температуре 23°С по методике, описанной в патенте 6417271, США. Введены следующие критерии:

Очень хорошее восстановление поверхности
после нажатия и удаления пальца1 балл
Хорошая восстанавливаемость поверхности
после нажатия пальца2 балла
Поверхность остается с вмятиной после
нажатия и удаления пальца3 балла

8. Для определения адгезии лакокрасочного материала (покрытия) к поверхности пластины из ТЭПа использовали метод решетчатого надреза. При определении адгезии методом решетчатых надрезов на испытуемом покрытии делают не менее пяти параллельных надрезов до подложки бритвенным лезвием по линейке на расстоянии 1-2 мм друг от друга и столько же аналогичных надрезов, перпендикулярных первым.

Поверхность покрытия после нанесения решетки очищают кистью от отслоившихся кусочков пленки и оценивают адгезию покрытия по четырехбалльной шкале:

1 балл - края надрезов должны быть гладкими и не иметь отслоившихся кусочков покрытия.

2 балла - незначительное отслаивание покрытия в виде точек вдоль линий надрезов или в местах их пересечения (до 5% поверхности с каждой решетки).

3 балла - отслаивание покрытия до 35% поверхности с каждой решетки.

4 балла - полное или частичное отслаивание покрытия (более 35% поверхности)

Адгезию лакокрасочного покрытия определяли на литьевых пластинках.

9. Твердость по Шору (шкала А) определяли согласно ASTM-D 2240 на литьевых образцах при температуре 23°С.

Как видно из таблицы 2, композиция -ТЭП (контрольный пример 1) на базе этилен-пропилен-диенового каучука и изотактического полипропилена без наполнителей имеет низкие прочностные показатели и относительное удлинение при разрыве. Такой ТЭП имеет низкую износостойкость, низкую стойкость к царапанью, недостаточную поверхностную твердость и теплостойкость. Замена этилен-пропилен-диенового каучука на не бутадиен-нитрильный каучук СКН (пример 2) не позволяет существенно улучшить рассматриваемые характеристики.

Термоэластопласт (примеры 3-6, 13-14) на базе СКЭПТ+ПП или СКН+ПП, содержащий синергическую смесь наполнителей (оксид кремния+карбонат кальция), имеет повышенную прочность при разрыве и относительное удлинение при разрыве, поверхностную твердость, адгезию к краске, износостойкость и хорошую стойкость к царапанию.

Применение одного из предлагаемого наполнителя (т.е. несмешанного) в составе ТЭПа не дает эффекта улучшения свойств по сравнению со смесью наполнителей. Это наглядно видно при сравнении состава и свойств композиций, приведенных в примерах (3-4) и (9-10). Как видно из таблиц 1 и 2, при введении в композиции смеси наполнителей (примеры 3-4) происходит заметное улучшение свойств ТЭПа, в то время как при добавлении отдельно оксида кремния (пример 10) или карбоната кальция (пример 9) не наблюдали существенного улучшения свойств ТЭП.

В примерах 16-17 приведены данные, характеризующие влияние (количества) концентрации смеси наполнителей на свойства ТЭПа. Как видно из примера 16, снижение суммарного количества вводимой смеси до 0,4 мас.% (0,2 мас.% оксида кремния +0,2 мас.% карбоната кальция) заметно не улучшает механические показатели, а также твердость поверхности и теплостойкость ТЭПа. Вместе с тем, ввод большого количества общей смеси наполнителей (пример 17) до 6 мас.% ухудшает прочностные и эластичные показатели композиций. Поэтому предлагаемая концентрация смеси наполнителей составляет от 0,4 до 5 мас.%.

На текучесть расплава термоэластопласта заметное влияние оказывает полиэтилен низкой плотности. Это заметно видно в примерах (5,6, 9-12, 15) при получении ТЭП на основе этилен-пропилен-диенового и нитрильного каучуков. Показатель текучести расплава в этих ТЭПах возрос до 1,8 г/10 мин.

В примерах (7-8) в термоэластопласт ввели 1,0 мас.% минерального масла, а в примерах (11-12) его содержание увеличили до 10 мас.%. При увеличении дозировки масла от 1,0% до 10,0% прочностные характеристики, теплостойкость и поверхностная твердость заметно снижаются. Одновременно с этим ухудшается адгезия краски к поверхности термоэластопласта. Учитывая все это, содержание масла ограничили до 10 мас.%. Соагенты сшивки-метакрилат или винилбутират (примеры 7,8) таблица 1, вводимые в количестве 0,5-1,0 мас.% совместно с пероксидами и наполнителями заметно влияют на свойства композиций. При сравнении композиций, содержащих со-агенты сшивки (примеры 7, 8) и без них (примеры 3-6, 9-17) видно, что такие характеристики, как прочность при разрыве и относительное удлинение при разрыве возрастают.

Таким образом, из таблицы 2 видно, что по сравнению с прототипом предлагаемая термопластичная эластомерная композиция обладает более высокими прочностными и эксплуатационными характеристиками, высокой стойкостью к износу, царапанию и твердостью. Это достигается за счет того, что в системе каучук СКЭПТ или СКН+полипропилен за счет введения синергической смеси наполнителей: оксид кремния+карбонат кальция протекает процесс упорядочения структур и, как следствие, улучшение свойств термоэластопласта. Другой причиной улучшения прочностных показателей термоэластопласта является уменьшение размера доменов эластомерной фазы при диспергирующем смешении в экструдере за счет выравнивания вязкостей расплава полипропилена и каучука. При этом уменьшаются размеры доменов каучука. Выборочное определение под микроскопом размера доменов СКЭПТ для примеров 1 и 7 показало, что в первом случае размер доменов составлял 75-85 мкм, в то время как для примера 7 эта величина составляла 15-20 мкм.

Изобретение найдет применение при изготовлении деталей автомобилей, в электротехнической промышленности, в кабельной промышленности, в производстве резинотехнических изделий, изделий быта, в обувной промышленности.

Таблица 1Состав композиций (ТЭП)
Компоненты, мас.%Номер примера
1 конт.2 конт.3456789101112131415161718 прот % мас18 прот м.ч.
Полипропилен изотактический303040402020404030303030404030404032,2550
Бутадиен-нитрильный каучук-65,3-52,372,8--49--49,6-44,9-60,7-47--
Этилен-пропилен-диеновый каучук65,3-52,3--72,349,7-56,357-49-49,5-53-32,2550
Полиэтилен низкой плотности22333333557722533--
Органическая перекись
Луперокс10111110,50,51,61,611--22-1-0,651
Луперокс 231----------12--0,2-1--
Минеральное масло марки И-40А1111111155101055222--
Ирганокс 10100,10,10,10,10,10,10,10,10,20,10,10,10,10,10,10,10,1--
Ирганокс PS 8020,30,30,30,30,30,30,30,30,50,10,30,20,50,20,20,20,2--
Ирганокс МД 10240,30,30,30,30,30,30,30,30,50,20,50,20,50,20,30,30,3--
Оксид кремния--1111111,5112,50,50,50,23--
Карбонат кальция--1111221,5-0,50,52,50,510,23--
Полиорганосилоксан-----------------1,32
Парафиновое масло-----------------32,2550
Соагент сшивки
Дивинилбензол-----------------1,32
Метакрилат или винилбутират------10,5-----------
Таблица 2Свойства композиций (ТЭП)
Номера композиций
Наименование параметра123456789101112131415161718
контрконтрпрот.
1. Показатель текучести0,80,90,90,81,71,80,40,310,911,10,60,21,612,31,4
расплава при 230°С и нагрузке
2,16 кг, г/10 мин.
2. Прочность при разрыве, МПа4,75,211,810,39,29,712,211,97,36,56,88,81211,26,95,888
3. Относительное удлинение234210450460386327460445272265334366235315222250218420
при разрыве, %
4. Износ по корундовому0,60,60,30,30,40,40,30,30,60,60,50,50,20,30,40,20,20,4
полотну: Jn·105 при Р=1 кгс/см2
5. Стойкость к царапанию,113333332222422143
баллы
6. Температура размягчения по135136141140141142144145142143137134145140138139146137
Вика, °С
7. Податливость под действием223322211111211121
пальца (органолептический
тест), баллы
8. Твердость поверхности616278757273777663646568826466698165
по Шору (шкала А), ед.
9. Адгезия лакокрасочных221111113333331214
материалов к поверхности
ТЭП, баллы
10. Диспергируемость компонента--1111112244223331
(С) и наполнителей

1. Термопластичная эластомерная композиция, включающая изотактический полипропилен, синтетический каучук, органический пероксид, минеральное масло, наполнитель, отличающаяся тем, что она дополнительно содержит эфир - 3,5-дитретбутил-4-гидроксифенил-пропионовой кислоты и пентаэритрита - Ирганокс 1010, 3,3-тиобисдиоктадециловый эфир пропионовой кислоты - Ирганокс PS802, 3,5-бис(1,1-диметилэтил)-4-гидрокси-2-(3-[3,5-бис(1,1диметилэтил)-4-гидроксифенил]-1-оксопропил]гидразид - Ирганокс 1024, добавку, улучшающую текучесть расплава, - полиэтилен низкой плотности с показателем текучести расплава от 7 до 100 г/10 мин при температуре 190°С и нагрузке 2,16 кг, в качестве синтетического каучука содержит этиленпропилен-диеновый или бутадиеннитрильный каучук, в качестве органического пероксида содержит 2,5-диметил-2,5-ди(трет-бутилперокси) гексан - Луперокс 101 или 1,1-ди (трет-бутилперокси)-3,3,5-триметилциклогексан - Луперокс 231, в качестве наполнителя содержит смесь карбоната кальция и оксида кремния в соотношении 1:2-2:1 при следующем соотношении компонентов, мас.%:

Изотактический полипропилен20,0-40,0
Синтетический каучук44,9-73,2
Органический пероксид0,2-2,0
Минеральное масло1,0-10,0
Смесь карбоната кальция и оксида
кремния в соотношении 1:2-2:10,4-5,0
Ирганокс 10100,1-0,2
Ирганокс PS 8020,2-0,5
Ирганокс 10240,2-0,5
Полиэтилен низкой плотности с показателем
текучести расплава 2,0-7,0 от 7 до 100,0 г/10 мин
при температуре 190°С и нагрузке 2,16 кг0,5-1,0

2. Термопластичная эластомерная композиция по п.1, отличающаяся тем, что дополнительно содержит в качестве соагента сшивки - метакрилат или винилбутират в количестве 0,5-1,0 мас.%.

www.findpatent.ru

Подошвы для обуви. Разновидности, достоинства, недостатки

Полимерная подошва — общее название класса подошв, основой материала которых являются те или иные полимеры.Обувную промышленность заинтересовали следующие свойства полимерных материалов:  - хорошая термостойкость при воздействии высоких температур и эластичность при низких температурах;- стойкость к воздействию микроорганизмов, растворителей, щелочей, кислот, радиации, света, озона;- высокая остаточная прочность при многократном изгибе и сопротивление разрыву;- высокая степень электроизоляции.Подбирая рецептуру на основе полимеров, можно получать материал для обувной подошвы со свойствами, которые в оптимальной мере отвечают поставленным задачам.

Из полимерных материалов можно изготовить даже очень тонкую подошву, а различные вставки позволяют сделать её многоцветной, что очень важно для современной обуви. При этом дизайнеры имеют максимальную степень свободы в оформлении профиля подошв для создания разнообразной и разнопрофильной

обуви._______________________________________Подошвы из кожиДостоинства: Кожаная подошва используется во всех типах обуви, включая детскую, домашнюю и модельную всех сезонов. Обувь на кожаной подошве отлично выглядит и позволяет ноге дышать, поскольку является природной мембраной.

Недостатки: При ношении во влажную погоду кожаная подошва может деформироваться, а уход за ней подразумевает постоянное использование специальных спреев и пропиток. Кожа обладает низкой износостойкостью, поэтому на кожаные подошвы рекомендуется установка профилактики, а для зимней обуви она обязательна, иначе без нее подошва будет скользить по льду и снегу и деформироваться еще быстрее. ________________________________________Подошвы из тунитаТунит — это резина с включением кожаных волокон, поэтому второе название этого материала — «кожволон».Достоинства: По внешнему виду, твердости и пластичности тунитовые подошвы похожи на кожаные, но лучше ведут себя в эксплуатации: почти не стираются и не промокают. На такие подошвы легко нанести рельеф, что придает им чуть большее сцепление с поверхностью, чем коже.

Недостатки: Но даже несмотря на это обувь на тунитовой подошве очень скользкая из-за высокой жесткости материала. Поэтому тунит используется при изготовлении только летней и весенне-осенней обуви клеевого метода крепления ________________________________________

Подошвы из дереваДостоинства: Дерево — это экологически чистый и очень гигиеничный материал, а деревянные подошвы имеют оригинальный внешний вид. Впрочем, в последнее время вместо дерева для изготовления обуви чаще используется клееная фанера. Она может быть из древесины березы, дуба, бука или липы и как материал легче поддается механической обработке, хорошо формуется и недорого стоит. Также популярностью пользуются подошвы с использованием пробкового материала. Имея с ними дело, надо понимать, что пробковое дерево из-за своей природной мягкости не может служить основным материалом для изготовления подошвы, поэтому пробка используется только для декоративной обтяжки.

Недостатки: Деревянные подошвы жесткие, быстро истираются и обладают плохой водостойкостью. При изготовлении таких подошв расходуется много материала. Обтяжка из пробки подвержена сколам и дефектам из-за мягкости материала. _________________________________________

ПВХ-подошва — распространённый вид подошвы, изготовленной из поливинилхлорида.Введение пластификаторов в ПВХ позволяет повысить морозостойкость полимерной композиции. Чем больше содержание пластификаторов, тем выше эластичность и морозостойкость, но ниже прочность. Пластификаторами ПВХ-композиций для низа обуви являются сложные эфиры фталиевой и себациновой кислот. Так как пластификаторы ослабляют межмолекулярное взаимодействие в зоне клеевого шва, то не допускается применение наиритового клея. При использовании ПВХ-подошв необходимо нанесение на затяжную кромку обуви полиуретанового клея.Вместе с тем ПВХ-подошвы считаются низкоэластичными и неморозостойкоми.__________________________________________ Подошвы из этиленвинилацетатаДостоинства: ЭВА — очень легкий материал, обладающий хорошими амортизирующими свойствами. Используется в основном в детской, домашней, летней и пляжной обуви, а в спортивной обуви — в форме вставок, потому что способен поглощать и распределять ударные нагрузки. Недостатки: С течением времени подошвы из ЭВА теряют свои амортизирующие свойства. Это происходит из-за того, что стенки пор разрушаются, и вся масса ЭВА становится более плоской и менее упругой. Также ЭВА не подходит в качестве материала для зимней обуви, поскольку этот материал очень скользкий и неустойчив к морозам. ___________________________________________ Подошвы из поливинилхлорида Достоинства: Подошвы из ПВХ хорошо сопротивляются истиранию, стойки к воздействию агрессивных сред и легки в изготовлении. Их часто используют в домашней и детской обуви, а раньше особенно широко применяли для спецобуви, так как при смешивании с каучуком ПВХ получает такие свойства, как масло- и бензостойкость.Недостатки: ПВХ используется только при производстве повседневной обуви для осени или весны, потому что этот материал имеет большую массу и низкую морозостойкость, не выдерживая температуры ниже -20 градусов. Кроме того, подошва из ПВХ плохо крепится к кожаному верху обуви, поэтому качественная обувь из кожи с подошвой из ПВХ сложна и дорога в производстве.___________________________________________ Подошвы из термополиуретана Достоинства: Термополиуретан обладает достаточно высокой плотностью, благодаря чему из него можно изготавливать подошвы с глубоким протектором, которые обеспечивают отличное сцепление с поверхностью. Также достоинствами ТПУ является высокая износостойкость и сопротивление деформации, в том числе порезам и проколам. Недостатки: Высокая плотность термополиуретана является одновременно и его недостатком, ведь из-за этого вес термополиуретановой подошвы достаточно велик, а эластичность и теплоизоляция оставляют желать лучшего. Для улучшения этих характеристик ТПУ часто комбинируют с полиуретаном, тем самым добиваясь снижения веса подошвы, повышая ее теплоизоляцию и эластичность. Такой способ называется двухкомпозиционным литьем, и узнать его довольно просто: изготовленная по такой технологии подошва состоит из двух слоев, и верхний слой сделан из полиуретана (ПУ), а нижний, контактирующий с землей, выполнен из термополиуретана. ___________________________________________ Подошвы из термоэластопласта Достоинства: Этот материал может считаться всесезонным. Он прочен, эластичен, устойчив к морозам и износу. ТЭП обеспечивает хорошую амортизацию и сцепление с грунтом. Благодаря технологии изготовления подошвы из ТЭП, ее внешний слой получается монолитным, что обеспечивает ему прочность, а внутренний объем — пористым, сохраняющим тепло. Термоэластопласт может быть переработан, а это значит, что его использование в подошвах экономит ресурсы и не загрязняет окружающую среду.Недостатки: При высоких и очень низких температурах (свыше 50 градусов и ниже -45 градусов) ТЭП теряет свои свойства, поэтому его используют только в повседневной обуви и, к слову, редко применяют для спецобуви._________________________________________ Подошвы из полиуретана Достоинства: Полиуретан обладает хорошими эксплуатационными свойствами: он мало весит, так как имеет пористую структуру, хорошо сопротивляется истиранию, гибок, отличается отличной амортизацией и хорошей теплоизоляцией. Изготовленные из полиуретана подошвы — легкие и гибкие, поэтому применяются в обуви, где эти характеристики имеют особенное значение.Недостатки: Пористая структура полиуретана является и своеобразной оборотной стороной медали. Например, из-за нее полиуретановая подошва имеет плохое сцепление со снегом и льдом, поэтому зимняя обувь с подошвой из ПУ сильно скользит. Также минусом является большая плотность материала и потеря эластичности при низких (от -20 градусов) температурах. Следствием этого становятся разломы в местах изгиба подошвы, скорость появления которых зависит от особенностей эксплуатации обуви, в частности, от походки человека, степени его подвижности и других факторов. __________________________________________

spotiko.blogspot.com

Особенности термоэластопластов (ТЭП) | Инрусстрейд

Термоэластопласт (ТЭП) - это полимерный материал, обладающий физическими свойствами вулканизированных резин и характеристиками перерабатываемости термопластов. В чём-то эта субстанция похожа на эластомер, к примеру, она может менять форму с размером, возвращаясь к исходным параметрам. В число главнейших преимуществ данного материала входят его пластичность и упругость.

В структуру ТЭП входят две микроскопические фазы. Первая фаза низкомодульная, легко деформирующаяся. Вторая фаза, наоборот, жёсткая - она связывает упруго-эластичные зоны. Именно благодаря таким внутренним характеристикам ТЭП способен изменяться: при нагревании материала до температуры выше, чем температура плавления, происходит расплавление жёсткой фазы, и материал превращается в полимерную жидкость.

Термоэластопласты обладают высокой стойкостью к щёлочам и химикатам, влаге, УФ-излучению, а также негативным воздействиям окружающей среды, что позволяет использовать их в производстве изделий, применяемых в строительстве и канализационных системах. Кроме того, ТЭП не токсичны.

Основными преимуществами ТЭП являются:

  • Мягкость и упругость;
  • Сохранение эластичности при понижении температуры;
  • Возможность повторной переработки;
  • Высокая устойчивость к химическим и термическим воздействиям;
  • Продолжительный срок эксплуатации;
  • Безопасность для здоровья.

Стоит также отметить, что термоэластопласты подразделяют на несколько видов в зависимости от того, какой компонент лежит в основе термоэластопласта. Так, их разделяют на:

  • Стирольные ТЭПы - в качестве основного компонента применяются стирольные каучуки;
  • Полиолефиновые ТЭПы - в качестве основного компонента используются EPDM каучуки;
  • Полиуретановые ТЭПы, у которых основным компонентом является полиуретан;
  • Полиэфирные ТЭПы, при производстве которых применяют полиэфир;
  • Термоэластопласты на основе ПВХ.

Основные компоненты определяют характеристики термоэластопластов, а также область их применения. При этом главным нормировочным показателем марки ТЭП можно назвать твёрдость - обычно она находится в пределах от 25 по Шору А до 60 по Шору D. Тем не менее, вне зависимости от типа термоэластопластов, все они отличаются устойчивостью в широком интервале температур, при этом в некоторых случаях они даже превосходят по данным характеристикам синтетические и натуральные каучуки.

Также, как и каучуки, термоэластопласты позволяют вводить в свой состав различные минеральные наполнители или стабилизаторы с пластификаторами. Это позволяет регулировать свойства термоэластопластов. Так, они могут обладать:

  • Хорошей механической прочностью;
  • Высокими способностями к противодействию УФ-излучению, озону или влаге;
  • Высокой атмосферостойкостью;
  • Хорошей стойкостью к химическому воздействию, а также высокой бензо- и маслостойкостью;
  • Отличной гибкостью, а также ударной вязкостью при высоких и низких температурах;
  • Высокой износостойкостью;
  • Улучшенными свойствами при низких температурах;
  • Долговечностью;
  • Стойкостью к ударам;
  • Эластичностью;
  • Высокой стойкостью к усталостным деформациям и т.д.

Помимо этого, термоэластопласты обладают способностью со временем улучшать свои прочностные показатели, в отличие от резин, которые теряют эластичность, становятся хрупкими и ломкими.

ТЭП сохраняют эластомерные свойства при температура от -65°С до +150°С.

Термоэластопласты используются в следующих видах продукции:

Переходные манжеты - переходные манжеты применяются для подсоединения слива к канализационной трубе.

inrusstrade.ru

Словарь

Если Вы ищете ответы на вопросы касающиеся обувной промышленности (что такое смесовый мех, подошва ТЭП, что это, какая морозостойкость у ПУ подошв и тд.), добро пожаловать в наш словарь.

ПУ (полиуретановая) подошва - подошва, изготавливаемая литьевым методом. Основные качества: маслостойкость, устойчивость к истиранию, сопротивление многократному изгибу и теплостойкость. Морозостойкость подошв до -50°.

ТЭП (термоэластопласт) подошва - подошва обуви, изготовленная из термопластичной резины. Очень многие люди задаются вопросом – подошва ТЭП, что это такое? ТЭП подошва сочетает в себе эластичные свойства каучуков (способность к высокоэластическим деформациям и высокая морозостойкость) и термопластические свойства термопластов (высокая текучесть в расплавленном состоянии и способность перерабатываться литьевым способом). Подошва ТЭП лишена недостатков резиновых подошв, низкой эластичности и морозостойкости ПВХ-подошв. Материал из которого изготавливается ТЭП подошва мо­жет быть пе­ре­ра­бо­тан, а это зна­чит, что его ис­поль­зо­ва­ние в по­дош­вах эко­но­мит ре­сур­сы и не заг­ряз­ня­ет ок­ру­жа­ющую сре­ду.

Подошва ТЭП, что это (основные преимущества данного типа подошв):

Безопасная носка. Смягчая ударные нагрузки при ходьбе, ТЭП подошва обеспечивает повышенную устойчивость стопы на неровных поверхностях.

Устойчивость на льду и влажном снегу. Для лучшего сцепления с поверхностью (льдом, снегом и т.п.) ТЭП подошва оснащена рельефным протектором.

Износостойкость. Подошва ТЭП устойчива к истиранию об асфальт и многократным деформациям при сжатиях и изгибах.

Теплосбережение. Подошва ТЭП хорошо сохраняет тепло и в ней ваши ноги никогда не промокнут.

Гибкость. Подошва ТЭП очень эластична и не препятствует естественному движению ваших ног.

EVA (этиленвинилацетат) подошва - основные преимущества данной подошвы- это ее необычайная легкость и высокая теплозащита. Водонепроницаема. Стойкость к воздействию химических веществ (масел, растворителей). Прекрасная амортиация и высокая износоустойчивость.

ПВХ (поливинилхлорид) подошва- подошва с средними показателями морозостойкости и пластичности. Высокая износостойкость и легкость.

Смесовый мех - это мех, полученный путем смешивания волокон и нитей разного происхождения ( Например: натуральная шерсть 80% и синтектическое волокно 20%).Это позволяет придать обуви дополнительные физико-механические и эксплуатационные свойства.

Нубу́к — мелковорсистая кожа, в процессе выделки подвергающаяся хромовому дублению и шлифовке лицевой поверхности мелкоабразивными материалами, например, песком или мелкозернистой абразивной шкуркой. Нубук похож на замшу, однако изготавливается из других видов кожи, как правило крупного рогатого скота.

Велюр - кожа хромового дубления со снятым лицевым слоем, по внешнему виду напоминает замшу, но грубее ее и имеет более низкий ворс, что позволяет ее использовать в обувной промышленности и в кожаной галантерее. И велюр, и нубук представляют собой шлифованную кожу. Отличие в том, что для получения велюра шлифуют внутреннюю сторону шкуры, а для получения нубука – лицевую.

Подкладка транспира - вид ткани, обладающий высокими гигроскопичными свойствами. Гигроскопичность волокон обеспечивает в одежде поглощение пота, выделяемого кожей человека, и отдачу его во внешнюю среду. Испаряющиеся потовые выделения понижают температуру человеческого организма. Волокна при поглощении влаги выделяют тепло. Это приводит к увеличению давления водяных паров в волокне, что в свою очередь вызывает удаление части влаги из волокна и поглощение тепла волокном. Эффект охлаждения тела человека уменьшается. Таким образом, как при поглощении влаги волокном, так и при испарении влаги волокна благодаря своей гигроскопичности защищают тело от резкого влияния температуры окружающего воздуха. Чем выше поглощение влаги волокном, тем сильнее его защитное действие от резких изменений температуры, тем выше его гигиеничность.

Кожволон подошва - это подошвенная резина, с толщиной, твёрдостью и пластичностью аналогичными коже.

Релак подошва - это кожволон со специальной отделкой ходовой поверхности.

Мы надеемся, что после прочтения нашего словаря Вы получили ответы на все, возникшие вопросы, и Вам не нужно будет больше думать: «подошва ТЭП, что это?».

Желаем Вам успешных покупок!

odin-shop.ru