Дешевая-обувь.рф

27 .Топография поражения зрительных путей. Исследование цветоощущения


Определение цветоощущения

Важной зрительной функцией является цветоощущение. По состоянию цветового зрения можно судить о заболеваниях сетчатки и зрительных путей.

Существуют немые и гласные методы исследования цветоощущения. Для исследования гласным методом используют полихроматические таблицы Рабкина, на цветовом, поле которых изображены цифры, составленные из разноцветных кружков. В связи с тем, что цветоаномалы судят о цветовых тонах по их яркости, фон таблиц и цифры на них имеют одинаковую яркость, но различные цветовые оттенки. Поэтому больные с нарушенным цветоощущением не могут правильно назвать нарисованные на таблице знаки. На основании анализа результатов исследования можно дифференцировать один вид нарушения цветоощущения от другого, судить о том, восприятие какого цвета больше страдает у больного - красного (протанопия) или зеленого (дейтеранопия). С помощью специальных таблиц можно разграничить приобретенные нарушения цветового зрения от врожденных.

Исследование цветового чувства с помощью полихроматических таблиц Рабкина проводят следующим образом: исследуемый садится перед окном, а врач - спиной к окну на расстоянии 1 м от пациента и держит таблицы. Показ каждой из них продолжается в течение 5 - 6 секунд. Немой метод исследования цветового зрения состоит в том что обследуемому показывают мотки ниток, очень близких по тону, и предлагают разложить их на отдельные группы соответствующего цвета.

Клинические методы исследования рефракции

Субъективное определение рефракции заключается в подборе корригирующего стекла под контролем проверни остроты зрения, при этом каждый глаз исследуют отдельно. Если острота зрения без коррекции равна 1 0. то это чаще указывает на эмметропию или гиперметропию слабой степени. Однако если нормальной является острота зрения более 1.0, то суждение о виде и степени рефракции может быть иным

Для уточнения клинической рефракции, как правило, необходимо перед исследуемым глазом ребенка поставить двояковыпуклое стекло силой в + 0,5 6 При эмметропии фокус лучей соберется перед сетчаткой - зрение ухудшится. Если же с приставлением собирательного стекла силой в + 0,5 О отмечается улучшение зрения или оно не изменяется, то это указывает на наличие гиперметропии, при которой это стекло уменьшает напряжение аккомодации и приближает главный фокус к сетчатке.

Если же острота зрения меньше 1.0, то исследование рефракции также начинают с приставления слабого ( + 0,5 О) собирательного стекла. Это стекло исключает импульс к аккомодации и дает возможность получить четкий ответ об ухудшении или улучшении зрения

Если собирательное стекло улучшило зрение, то у исследуемого гиперметропия; далее, приставляя более сильные собирательные стекла, находят такое, с которым обсле­дуемый дает наилучшую остроту зрения. Приставление нескольких следующих стекол может не изменить остроты зрения. Наконец, более сильное стекло, поставленное перед глазом, ухудшает остроту зрения. На степень гиперметропии укажет наиболее сильное стекло, с которым получена наилучшая острота зрения.

Например, острота зрения 0,3 Если приставляют к глазу сферическое стекло sр. сотех (+) 0,5 D, обследуемый отмечает улучшение зрения.

Со стеклом силой в +2,0 О острота зрения составляет 1,0, но и с +2,5 D, и с +3,0 D острота зрения равна 1,0 Со стеклом в +3,5 D острота зрения ухудшилась. Следовательно, у ребенка субъективно выявлена гиперметропия в 3,0 D.

Если слабое собирательное стекло ухудшает зрение, надо поставить перед глазом слабое рассеивающее стекло. Улучшение остроты зрения при этом укажет на наличие у обследуемого близорукости. Постепенно ставят более сильные стекла и, наконец, такое, при котором у обследуемого отмечается наибольшая острота зрения, Но и со стеклом большей силы также можно получить такую же остроту зрения В данном случае при миопии на степень ее укажет наименьшее стекло, с которым получена наилучшая острота зрения. Более сильные рассеивающие стекла переносят фокус лучей за сетчатку, и включающаяся при этом рефлектор но аккомодация нейтрализует появившуюся гиперметропию. Постоянное включение миопом аккомодации приводит к ряду неприятных субъективных.

studfiles.net

Диагностика цветовой чувствительности глаз

Человеческий глаз способен воспринимать не только различные цвета, но и большое количество оттенков. Однако, как и в любых других зрительных функциях, в цветоощущении, также могут иметь место различные аномалии. Диагностируют цветовые расстройства с помощью специальных таблиц, тестов, приборов.

Что такое цветовое зрение человека

Возможность глаз видеть мир во всех красках обеспечивается специальными клетками, расположенными в сетчатке глазного яблока – колбочками, палочками, в которых содержится зрительный белковый пигмент чувствительный к влиянию светового потока волн различной длины. Колбочки состоят из трёх основных элементов, способных воспринимать цвет.

1-й - красный.

2-й - синий.

3-й - зелёный.

Палочки несут ответственность за чёрно-белое восприятие. Все остальные цвета, а также оттенки, обеспечиваются посредством разного по силе светового раздражения всех трёх цветовых элементов. В результате чего в головном мозге, а точнее его зрительном центре создаётся полноценное цветовое зрение.

Аномалии цветовой функции зрительного аппарата могут присутствовать у человека изначально – передаваться генетически, или же возникать в результате заболеваний зрительного аппарата, нервной системы. Например, таких, как:

  • Ожог сетчатки (от сварочного аппарата, из-за действия агрессивного излучения ультрафиолета).
  • Черепно-мозговые травмы.
  • Диабетическая макулодистрофия.
  • Катаракта.

Приобретённые нарушения цветового ощущения успешно поддаются лечению при своевременном обращении к врачу офтальмологу.

В чем заключается диагностика цветового зрения

Пример таблицы Рабкина (фото: drive2.ru)

В основном для оценки цветоощущения применяют многоцветные пигментные таблицы, тесты.

Таблица Рабкина нашла широкое применение не только для диагностики нарушения любого вида цветового зрения, но и для обследования людей на предмет допуска к работе, например, связанной с вождением транспорта, управлением механизированными средствами, службой в вооружённых силах, где присутствует необходимость в чётком различении цветов и оттенков.

Люди, у которых в процессе обследования были выявлены какие-либо нарушения цветового зрения, к работе не допускаются. Патологическое восприятие цвета может негативно повлиять на их профессиональной деятельности, либо создать аварийную ситуацию.

В таблице Рабкина используются такие основные характеристика цвета, позволяющие в полном спектре выявить различные патологии цветового восприятия, как:

  • Цветовые тона.
  • Насыщенность.
  • Яркость.

Виды исследований

Диагностика цветоощущения осуществляется врачом окулистом посредством различных таблиц, тестов или приборов. Например, таких, как:

  • Тест Ишихара, FALANT-тест, Гольмгрена.
  • Таблицы Рабкина, Штиллинга, Юстовой.
  • Спектральные приборы аномалоскопы Негеля, Рабкина, Гейдельберга. Аномалоскоп - это микропроцессорный аппарат. Его работа основана на принципе смешивания цветов. Например, прибор Гейдельберга состоит из оптического устройства, наклоняемого тубуса, тестового поля, ручек управления.
  • Электроретинография. Даёт возможность изучить функциональные возможности палочек.
  • Хроматическая периметрия. Применяется окулистами с целью выявления дальтонизма, спровоцированного различными глазными патологиями на ранней стадии заболевания.

Показания к исследованию цветовой способности глаз

Цветовое восприятие, без каких-либо патологий называют трихромазия. Недостаточное цветовое зрение имеет определение – дальтонизм, который классифицируется по таким формам данного патологического процесса:

  • Цветослабость. Пациент испытывает некоторое затруднение с обозначением оттенков. Часто ошибается или для идентификации ему необходимо больше времени, чем предусмотрено (не больше 10 секунд).
  • Цветовая слепота (ахроматопсия). Генетическая аномалия. Полностью отсутствует функция цветовых пигментов. Пациент видит мир в чёрно-белом цвете.
  • Цветовая агнозия. Возникает из-за поражения коры головного мозга, часто сопровождается нарушением различных видов чувствительности (снижение зрения, слуха). Больные могут полностью потерять функцию идентификации цвета либо утрачивают способность подбирать схожие оттенки или связывать цвет с названием предмета.

Дихромазия. Врождённая патология цветового восприятия, которая характеризуется отсутствием одного из цветовосприимчивых элементов. Пациент может видеть 2 цвета.

В свою очередь дихромазия классифицируется на следующие типы:

  • Протанопия - неспособность колбочек воспринимать красный длинноволновый цвет. Самый распространённый тип дальтонизма.
  • Дейтеранопия - отсутствие восприятия зелёного средеволнового цвета.
  • Тританопия - зрительный аппарат пациентов с данной патологией не может поглощать синий цвет, который является коротковолновым. Данная патология часто сопровождается нарушением световой чувствительности глаз.
  • Монохроматия - абсолютная потеря функции двух или трёх цветовых элементов. Больной может видеть только один цвет.

К генетическому дальтонизму больше предрасположены лица мужского пола.

К различным нарушениям цветового зрения, возникшим из-за офтальмологических патологий, заболеваний нервной системы в равной степени склонны женщины и мужчины.

Все вышеперечисленные патологии являются прямым показанием для обращения к врачу офтальмологу.

Важно! Часто нарушение цветоощущения является одним из первых симптомов различных аномалий зрительного аппарата (отслоение сетчатки, пигментная дистрофия, глаукома). Недооценка состояния на ранних стадиях болезни может привести к запоздалой диагностике и развитию тяжёлых патологий

Лицам, профессиональная деятельность которых связана с нагрузкой на цветовое зрение, данный вид обследования является обязательным на предмет допуска к работе (водители, лётчики, железнодорожники, военные).

Возможные противопоказания к исследованиям цветовой функции глаз

Проведение любого вида диагностики цветового зрения следует отложить, если у пациента имеются следующие патологические проявления:

  • Повреждения глазного яблока (инородное тело, травма, ожог).
  • Нестабильное психическое состояние.
  • Повышенная температура тела.
  • Инфекционные заболевания глаз (конъюнктивит, ячмень, кератит).
  • Головокружение, головная боль.
  • Высокое артериальное давление.
  • Общая слабость.
  • Нарушение ночного сна.

Как подготовиться к диагностике цветового зрения

Диагностика цветового зрения достаточно проста и не требует специальной подготовки. Однако для того чтобы результаты обследования были наиболее достоверными, следует соблюдать следующие рекомендации:

  • Перед исследованием важен полноценный ночной сон.
  • Необходимо избегать нервного и умственного перенапряжения. Утомления глаз.
  • Диагностику лучше проводить утром, после лёгкого завтрака.

Как проходит исследование

По таблице Рабкина можно определить степень тяжести генетического дальтонизма, а также дифференцировать его с приобретенной формой заболевания.

Пациенту предлагают изучить специальные таблицы, в которых среди фонового изображения в виде кругов однородного цвета нарисованы отличные от них по цвету кружки образующие фигуру или цифру.

Таблицы показывают по очереди на расстоянии от 0,5 до 1 метра. На каждый объект выделяется не больше 10 секунд.

Все рисунки идентичны по яркости. Если пациент вынужден носить в повседневной жизни линзы или очки, то во время диагностики снимать их нет необходимости.

Люди, которые страдают аномальным цветовым зрением, лишены возможности определить нужную цифру, фигуру.

Обследование проводят только при хорошем освещении (искусственный дневной свет, естественное рассеянное освещение) в спокойной обстановке.

При прохождении теста Гольмгрена обследуемого человека просят взять моток с разноцветными нитками, распределить их таким образом, чтобы основные цвета были уложены на три отдельно предусмотренных места.

Для диагностики дальтонизма с помощью аномалоскопа чаще всего используют два световых поля. Первое освещается жёлтым цветом, второе зелёным и красным. В поле зрения находятся оба экрана. Пациент должен изменять интенсивность цветов (смешивать) на втором экране до тех пор, пока цвета обоих полей сравняются и станут одинаковыми (жёлтыми).

При явной протанопии или дейтеранопии пациенты приравнивают к жёлтому полю чистый зелёный цвет или красный.

Преимущества различных видов диагностики цветового зрения

Аномалоскоп - устройство для изучения цветоощущения (фото: argusoptik.hu)

Таблицы Рабкина успешно используются для основного обследования пациентов, выявления генетических, приобретённых патологий цветового зрения. Это не сложный, надёжный диагностический метод. Он даёт возможность понять также степень дальтонизма, так как позволяет определить в полном объёме все цвета и оттенки, которые не способен увидеть пациент.

Аномалоскопы применяют значительно реже. Они нужны для более точной диагностики. Также данные устройства используются не только для изучения функции цветового восприятия человека, но и предназначены для тренировки зрения людей, чья профессиональная деятельность заключается в наблюдении за разнообразными цветовыми конструкциями.

Кроме того, аномалоскопы позволяют отследить степень деградации глаза в процессе нагрузок на цветовое зрение связанных с работой.

Как проводится расшифровка результатов исследования

Если исследование проводилось посредством таблицы Рабкина, то диагноз ставят на основе количества расшифрованных пациентом цифр и фигур.

При обнаружении патологий цветового зрения в офтальмологическом кабинете заводят специальный бланк, в котором имеется уменьшенный дубликат пронумерованных таблиц Рабкина. Доктор делает пометки на не опознанных образцах, что даёт возможность верно поставить диагноз и выявить степень тяжести заболевания.

Человек с нормальным цветовым зрением безошибочно определит от 25 до 27 изображений.

Основных картинок в таблице 27. Рисунки составлены таким образом, чтобы максимально отследить малейшие отклонения цветового зрения.

Пациентов с признаками дальтонизма по степени выраженности патологии делят на 3 категории – А, В, С.

Для ненаследственного дальтонизма есть затруднение с определением всех трёх цветов, в отличие от генетического нарушения цветового зрения, которому характерно аномальное восприятие красного и зелёного. Однако при патологии зрительного нерва больные могут делать такие же ошибки, что и генетические цветоаномалы.

При поражении сетчатой оболочки глаза наблюдается нарушение в определении синего и жёлтого цвета.

Приобретённые заболевания, связанные с аномальным цветоощущением практически всегда сопровождаются различными расстройствами функций зрительного аппарата.

Очень важно при первых симптомах нарушения зрения вовремя обратиться к врачу офтальмологу.

Своевременная диагностика и лечение помогут избежать дальнейшего развития различных патологических состояний и дадут возможность улучшить или полностью восстановить цветовое восприятие.

simptomyinfo.ru

Исследование цветоощущения — МегаЛекции

Для диагностики расстройств цветоощущения в клинической практике чаще всего используют псевдоизохроматические таблицы Рабкина, пороговые таблицы Юстовой и соавт., а также аномалоскоп Раутиана.

Таблицы Рабкина (изд. VIII и IX) демонстрируют в случайном порядке при дневном освещении с расстояния около 0,5-1,0 м при экспозиции в пределах 5 секунд (слайд 52). Таблицы позволяют определить аномальность цветовосприятия в соответствии с классификацией Криса-Нагеля-Рабкина (табл. 1).

 

Таблица 1.

Классификация аномальности цветовосприятия

По Крису-Нагелю-Рабкину

Виды Форма Типы
Аномальная трихромазия Протаномалия (кр) А (высокая степень)
    В (средняя степень)
    С (слабая степень)
  Дейтераномалия (зел) А
    В
    С
  Тританомалия (фиол)  
Дихромазия Протанопия (кр) Дейтеранопия (зел) Тританопия (фиол)  
Монохромазия    

 

 

При наличии ошибок заполняют протокольную карту, в которой фиксируют ответы пациента. Следует помнить, что у пациента должна быть соответствующая острота зрения, которая бы позволяла увидеть цифры и фигуры в таблицах. Первая и вторая таблицы являются контрольными и составлены таким образом, что их видят все испытуемые. Для вынесения диагноза следует учитывать, какое издание таблицы было использовано: в VIII издании имеется 25 таблиц, а в IX - 27 таблиц в основном наборе. Форма и тип аномалии зависят от того, сколько таблиц было названо правильно и какие именно (табл. 2). Диагноз может иметь следующий вид: аномальная трихромазия (протаномалия), тип С.

Таблицы Юстовой и соавт. - служат для определения порогов цветоразличения (цветосилы) зрительного анализатора. С этой целью определяют минимальную насыщенность цвета, при которой пациент правильно распознает его тон. В наборе содержится 12 карт размером 130х130 мм. Каждая карта состоит из отдельных квадратиков размерами 9х9 мм. Используются два цветовых тона квадратиков на каждой карте, расположенные регулярными рядами с промежутками 2 мм. Квадратики, имеющие одинаковый цвет, образуют в центре фигуру в виде не замкнутого с одной стороны квадрата или буквы "П", а из квадратиков другого тона образуется фон (слайд 53). На обратной стороне каждой карты указан ее номер.

 

Таблица 2.

Примеры определения формы и типа цветоаномалии при использовании

Различных изданий таблиц Рабкина.

Виды расстройств Количество правильно названных таблиц в изданиях Номера таблиц, которые должны быть прочитаны правильно в разных изданиях
  VIII IX VIII IX
Нормальная трихромазия I-XXV I-XXVII
Аномальная трихромазия типа "С":     I, II, XVIII, I, II, VII, VIII,
- протаномалия >12 >13 XXIII-XXV XI, XVI, XVII,
- дейтераномалия >12 >20   XVIII, XIX, XXI, XXIII-XXVII
Дихромазия        
- протанопия I, II, XVII, XXII-XXV I, II, VII, VIII, XXIII-XXVI
- дейтеранопия I, II, VIII, XI, XII, XXII-XXV I, II, VIII, IX, XII, XXIII-XXVI

Степень снижения чувствительности каждого из приемников характеризуется картой с максимальным числом порогов, которую испытуемый не смог правильно прочитать. Исследование начинают с предъявления 12-й таблицы, которая служит для демонстрации метода и контроля. Карты 1-4 предназначены для исследования красночувствительного приемника, 5-8 - для исследования зеленочувствительного приемника, а 9-11 - для синечувствительного. В результате исследования записывают максимальное количество порогов по каждому приемнику, которые испытуемый не увидел по формуле: К/к; З/з; С/с, где большими буквами обозначены цветоприемники, а малыми - число не воспринятых порогов (табл. 3). Если все таблицы в наборе, соответствующем цветоприемнику распознаны правильно, то порог для данного приемника принимается равным 0.

 

Таблица 3.

Величина порогов цветоразличения.

Цветоприемник Число порогов цветовосприятия по номерам тестовых карт
 
К              
З              
С                
Степень цветослабости I II III Протанопия I II III Дейтеранопия I II III
  Протодефицит Дейтеродефицит Тритодефицит

 

Результаты исследования формулируют следующим образом:

Протанопия - К/30; З/0; С/0;

Протодефицит I степени (пациент не различил таблицу № 1) - К/5; З/0; С/0;

Дейтеродефицит II степени (пациент не различил таблицы № 5 и 6) - К/0; З/10; С/0;

Спектральная аномалоскопия - в настоящее время проводится на аномалоскопах ГОИ АН - 56 (Раутиана) (слайд 54). В основу исследования положен тот факт, что при смешивании красного и зеленого цветов в определенной пропорции можно получить желтый.

Исследование темновой адаптации

Адаптометрия проводится с целью оценки световой чувствительности глаза, которая может существенно страдать при целом ряде заболеваний: ретробульбарном неврите, пигментной дистрофии сетчатки, хориоретинитах, А-гиповитаминозе и т.д.

Исследование на адаптометре модели АДМ (слайд 55) производится чаще всего в следующих двух вариантах: трехминутная проба или часовая.

Сокращенная (трехминутная) проба проводится с соблюдением следующих условий: дополнительный фильтр должен быть включен, а сменные светофильтры выключены; деление шкалы диафрагмы устанавливается на отметке 1,1; деление на шкале рукоятки адаптационного шара устанавливается на отметке 1. Вначале пациент смотрит внутрь затемненного шара на красную фиксационную точку, находящуюся над демонстрационным окошком, до тех пор, пока не различит в окошке светлый объект (круг, квадрат или крест). Таким образом проводится предварительная темновая адаптация. Затем заслонкой закрывают демонстрационное окно и на 2 мин включают освещение шара, после чего свет выключают, окошко вновь открывают и просят пациента вновь смотреть на красную светящуюся точку. Регистрируют время различения тестовой фигуры (креста, круга или квадрата). В норме оно должно составлять не более 45 с.

Часовая проба производится для более глубокого обследования. При ее проведении дополнительный фильтр должен быть включен, сменные фильтры в начале исследования выключены, деление шкалы диафрагмы должно быть установлено на 1.4, а деление на шкале рукоятки адаптационного шара - на 1/2. В течение часа с интервалами 5 мин производят 13 измерений порога световой чувствительности при освещенности в помещении 4-5 лк. В интервалах между замерами пациент сидит с закрытыми глазами. Результат исследования выражают в единицах суммарной оптической плотности (светофильтр + диафрагма). Для каждого временного интервала пребывания имеется "зона нормы", которая может быть выражена либо в виде таблицы, либо в виде логарифмической кривой (Н.П. Рипак, 1955) (табл. 4).

Таблица 4.

Нормы световой чувствительности при часовом исследовании темновой

Адаптации на АДМ

Время пребывания в комнате Световая чувствительность глаза в единицах суммарной оптической плотности
  низший уровень средний уровень высший уровень
0,55 1,69 3,20 3,75 4,04 4,24 4,27 4,40 4,50 4,52 4,58 4,62 4,62 0,83 2,58 3,72 4,25 4,48 4,60 4,70 4,78 4,83 4,89 4,93 4,99 5,04 1,1 3,47 4,24 4,76 4,92 4,95 5,13 5,16 5,17 5,26 5,29 5,36 5,47

 

ЗАКЛЮЧЕНИЕ

 

Таким образом, традиционная визометрия и измерение контрастной чувствительности могут применяться для самых разнообразных целей и при различной патологии. Изменения показателей визоконтрастометрии, впрочем, как и показатели обычной визометрии, не являясь строго специфичными для большинства нозологических форм, тем не менее, являются хорошим способом оценки зрительных функций и ранней диагностики многих заболеваний. Разработка новых, более совершенных методик визометрии, визоконтрастометрии, периметрии ведется постоянно. Все шире становится круг заболеваний, при которых эти методики можно с пользой применять в целях диагностики или оценки адекватности проводимого лечения. Последние исследования четко показали возможность и рациональность использования пространственно-частотного подхода к оценке зрительных функций в клинической практике. Различные методики визоконтрастометрии получили одобрение у специалистов во всем мире и требуют тщательного дальнейшего изучения и совершенствования в целях внедрения в клиническую практику.

Конечно, сложно переоценить роль методик исследования зрительных функций в практической работе офтальмолога. Это и возможность оценки влияния заболевания на функции в динамике, и критерий адекватности проводимого хирургического или терапевтического лечения. На основе исследования зрительных функций производятся заключения о профессиональной пригодности, устанавливается инвалидность, таким образом, все эти методики лежат в основе работы врачебных экспертных комиссий, поликлиник, всех офтальмологических стационаров и владение ими в полном объеме является обязательным для каждого офтальмолога.

 

Заместитель начальника кафедры офтальмологии

д.м.н. полковник медицинской службы С. Коскин

"____"______________ _______г.

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

megalektsii.ru

27 .Топография поражения зрительных путей

28-29. Цветоощущение, методы исследования.

Для диагностики расстройств цветового зрения у нас в стране пользуются специальными полихроматическими таблицами профессора Е.Б. Рабкина Таблицы построены на принципе уравнивания яркости и насыщенности. Кружочки основного и дополнительного цветов имеют одинаковую яркость и насыщенность и расположены так, что некоторые из них образуются на фоне остальных цифру или фигуру. В таблицах есть также скрытые цифры или фигуры, распознаваемые цветослепыми. Исследование проводится при хорошем дневном или люминесцентном освещении таблиц, т.к. иначе изменяются цветовые оттенки. Исследуемый помещается спиной к окну, на расстоянии 0,5-1 м от таблицы. Время экспозиции каждой таблицы 5-10 с. Показания испытуемого записывают и по полученным данным устанавливают степень аномалии или цветослепоты. Исследуется раздельно каждый глаз, т.к. очень редко возможна односторонняя дихромазия Расстройство цветового зрения бывает врожденным и приобретенным, полным или неполным. Врожденная цветовая слепота встречается чаще у мужчин (8%) и значительно реже - у женщин (0,5%).Полное выпадение функции одного из компонентов называется дихромазией. Дихроматы могут быть протанопами, при выпадении красного компонента, дейтеранопами - зеленого, тританопами - фиолетового. Врожденная слепота на красный и зеленый цвета встречается часто, а на фиолетовый - редко. ослабление цветовой чувствительности к одному из цветов. Это цветоаномалы. цветоаномалии различают аномалии типа А, В, С. К Крайне редко встречается ахромазия - полная цветовая слепота. Никакие цветовые тона в этих случаях не различают, все воспринимается в сером цвете. Полная цветовая слепота – врожден - цветовая астенопия. Возможны приобретенные нарушения цветового зрения, которые по сравнению с врожденными более разнообразны и не укладываются в какие-либо схемы. Раньше и чаще нарушается красно-зеленое восприятие и позже - желто-синее. Иногда наоборот. Приобретенным нарушениям цветоощущения сопутствуют и другие нарушения: снижение остроты зрения, поля зрения, появление скотом и т.д. Приобретенная цветовая слепота может быть при патологических изменениях в области желтого пятна, папилломакулярном пучке, при поражении более высоких отделов зрительных путей и т.д. Приобретенные расстройства весьма изменчивы в динамике. Для диагностики приобретенных расстройств цветового зрения Е.Б. Рабкин предложил специальные таблицы. Существует ряд профессий, для которых нормальное цветоощущение является необходимым. Это транспортная служба, изобразительное искусство, химическая, текстильная, полиграфическая промышленности. Цветоразличительная функция имеет большое значение в различных областях медицины: для врачей инфекционистов, дерматологов, офтальмологов, стоматологов; в познании окружающего мира и т.д.

30. Светоощущение, адаптация к свету

Светоощущение - это способность зрительного анализатора воспринимать свет и различные степени его яркости. Эта функция является наиболее ранней и основной функцией органа зрения. Минимальная величина светового потока, которая дает восприятие света, называется порогом раздражения. Восприятие предельной минимальной разницы яркости света между двумя освещенными предметами - порогом различения. Величины обоих порогов обратно пропорциональны степени светоощущения. Световая адаптация - это приспособление органа зрения к условиям более высокой освещенности. Она протекает очень быстро. Из нарушений световой адаптации известны расстройства ее при врожденной цветослепоте. Клинически такие нарушения проявляются, так называемой, никталопией, т.е. лучшим зрением в темноте. Темновая адаптация - это приспособление глаза в условиях пониженного освещения, т.е. изменение световой чувствительности глаза после выключения действовавшего на глаз света. Исследование темновой адаптации имеет большое значение при профессиональном отборе, при проведении военной экспертизы. Для изучения световой чувствительности и всего хода адаптации служат приборы адаптометры. Для врачебной экспертизы применяется адаптометр С.В. Кравкова и Н.А. Вишневского. Он служит для ориентировочного определения состояния сумеречного зрения при массовых исследованиях. Длительность исследования составляет 3-5 минут. Действие прибора основано на феномене Пуркинье, который заключается в том, что в условиях сумеречного зрения происходит перемещение максимума яркости в спектре в направлении от красной части спектра к сине-фиолетовой. Этот феномен иллюстрирует такой пример: в сумерках голубые васильки кажутся светло-серыми, а красный мак почти черным. используя таблицу Кравкова-Пуркинье. Кусок картона размером 20 х 20 см оклеивают черной бумагой и, отступая 3-4 см от края по углам, наклеивают четыре квадратика размером 3 х 3 см из голубой, красной, желтой и зеленой бумаги. Цветные квадратики показывают больному в затемненной комнате на расстоянии 40-50 см от глаза. В норме вначале квадраты неразличимы. Через 30-40 секунд становится различим контур желтого квадрата, а затем голубого. При понижении светоощущения на месте желтого квадрата появляется более светлое пятно, голубой же квадрат не виден.

studfiles.net

Цветоощущение и методы исследования - О глазе

Цветоощущение (цветовое зрение) — способность зрительной системы воспринимать и различать цвета и их оттенки. Наибольшее распространение получила трехкомпонентная теория цветового зрения, выдвинутая в 1756 г. великим русским ученым М.В. Ломоносовым. Согласно этой теории, в сетчатке глаза человека имеется три вила колбочек, каждый вид колбочек содержит различные цветочувствитсльные зрительные пигменты; одни колбочки чувствительны к красному цвету, другие к зеленому, третьи к синему. Вся многообразная гамма цветов создается из смешения красного, зеленого и синего (фиолетового) цветов.

В соответствии с трехкомпонентной теорией цветового зрения восприятие всех трех цветов называется нормальной трихромазией, а люди, их воспринимающие, — нормальными трихроматами.

Виды нарушений цветового зрения

Цветоаномалия, или аномальная трихромазия — аномальное восприятие цветов, составляет около 70% среди врожденных расстройств цветоощущения. Аномальное восприятие красного цвета называется протапомалией, зеленого — дейтсраномалией, синего — тританомалией.

Дихромазия — восприятие только двух цветов. Различают три основных типа дихромазии:

  • - протапопия — выпадение восприятия красной части спектра;
  • - дейтсранопия — выпадение восприятия зеленой части спектра;
  • - тританопия — выпадение восприятия фиолетовой части спектра.
Монохромазия — восприятие только одного цвета, встречается исключительно редко и сочетается с низкой остротой зрения.

Для исследования цветоощущения используют специальные полихроматические таблицы профессора Е.Б. Рабкииа (см. рисунок). Обследуемый сидит спиной к источнику освещения (окну или лампам дневного света). Уровень освещенности должен быть в пределах 500—1000 лк. Таблицы предъявляют с расстояния 1 м, на уровне глаз исследуемого, располагая их вертикально. Длительность экспозиции каждого теста таблицы 3—5 с, но не более 10 с. Если исследуемый пользуется очками, то он должен рассматривать таблицы в очках.

Рисунок из книги Диагностические полихроматические таблицы Рабкина

Цитировано из книги Глазные болезни, авторы: Егоров Е.А., Епифанова Л.М.

Читайте также о зрении в журнале о глазе:Почему дальтоники не различают цветаУ глухих лучше развито периферическое зрениеОбнаружен новый слой роговицы глазаМозг сортирует зрительные образы не так, как считалось ранее

oglaze.livejournal.com

Цветоощущение. Расстройства цветоощущения, диагностика.

Цветоощущение (цветовое зрение) – способность глаза к восприятию цветов на основе чувствительности к различным диапазонам излучения видимого спектра. Это функция колбочкового аппарата сетчатки.

Все цвета разделяются на две группы:

а) хроматические – все тона и оттенки цветного спектра. Хроматические цвета характеризуются тремя качествами: 1) цветовой тон 2) насыщенность 3) яркость.

б) ахроматические – белый, серый, черный цвета, в которых человеческий глаз различает до 300 различных оттенков. Все ахроматические цвета характеризует яркость, т.е. степень близости к белому цвету.

В зависимости от длины волны можно выделить три группы цветов:

а) длинноволновые (красный, оранжевый – «Каждый охотник»)

б) средневолновые (желтый, зеленый – «…желает знать»)

в) коротковолновые (голубой, синий, фиолетовый – «… где сидит фазан»)

Все многообразие цветовых оттенков (несколько десятков тысяч) можно получить при смешении трех основных – красного, зеленого и синего.

Согласно трехкомпонентной теории Юнга-Ломоносова-Гельмгольца, существует три основные типа колбочек, каждому из которых свойственен определенный пигмент, избирательно стимулируемый монохроматическим излучением.

1) синие колбочки – максимум спектральной чувствительности в диапазоне 430-468 нм

2) зеленые колбочки – максимум спектральной чувствительности на уровне 530 нм

3) красные колбочки – максимум спектральной чувствительности на уровне 560 нм

Цветоощущение есть результат воздействия света на все три типа колбочек. Излучение любой длины волны возбуждает все колбочки сетчатки, но в разной степени. При одинаковом раздражении всех трех групп колбочек возникает ощущение белого цвета.

Выделяют врожденные и приобретенные расстройства цветоощущения. Они всегда двусторонние, не сопровождаются нарушением других зрительных функций, обнаруживаются при специальном исследовании.

Врожденные расстройства цветоощущения могут проявляться либо

1) аномальным восприятием цветов – цветоаномалия (аномальная трихромазия, может быть протаномалия – аномальное восприятие красного, дейтераномалия – зеленого, тританомалия - синего)

2) полным выпадением одного из трех компонентов (дихромазия, может быть протанопия – невосприятие красного, дейтеранопия – зеленого, тританопия – синего) или только

3) черно-белым восприятием (монохромазия).

Врожденная слепота на красный цвет – дальтонизм.

Приобретенные расстройства цветоощущения встречаются при заболеваниях сетчатки, зрительного нерва и ЦНС. Бывают на одном или обоих глазах, выражаются в нарушении восприятих всех трех цветов, обычно сопровождаются расстройством других зрительных функций, в отличие от врожденных расстройств могут претерпевать изменения в процессе заболевания и его лечения.

К приобретенным расстройствам цветоощущения относится видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают:

а) эритропсия – в красный

б) ксантопсия – в желтый

в) хлоропсия – в зеленый

г) цианопсия – в синий.

Оценка цветоразличительной способности глаза:

1. специальные пигментные полихроматические таблицы Рабкина – составлены из кружков разного цвета, но одинаковой яркости. Кружки одного цвета составляют фигуру или цифру, окрашенную в другой цвет, на фоне остальных кружков. Врач держит таблицу перед глазами пациента на расстоянии 0,5-1 м в течение 5 сек. Трихроматы видят цифру (фигуру), а дихроматы – нет.

2. спектральные приборы – аномалоскопы. В основе действия аномалоскопов – сравнение двухцветных полей, из которых одно постоянно освещается монохроматическими желтыми лучами с изменяемой яркостью (контрольное поле), а другое, освещаемое красными и зелеными лучами, может менять тон от чисто красного до чисто зеленого. Смешивая красный и зеленый цвета, обследуемые должен получить чисто желтый цвет, соответствующий контрольному.

31. Светоощущение. Методы определения. Расстройства сумеречного зрения.

Светоощущение – способность глаза к восприятию света различной яркости. Осуществляется палочковым аппаратом сетчатки, обеспечивает сумеречное и ночное зрение. Светоощущение – наиболее чувствительная функция органа зрения, изменение которой ранее всего начинается в случае различных патологических процессов (критерий ранней диагностики). У человека при наступлении слепоты светоощущение в сравнении с другими функциями глаза исчезает в последнюю очередь.

Световая чувствительность глаза проявляется в виде абсолютной световой чувствительности, характеризующейся порогом восприятия света (т.е. способности сетчатки воспринимать минимальное световое раздражения) и различительной световой чувствительности, характеризующейся порогом различения (т.е. способности улавливать наименьшую разницу в интенсивности освещения; позволяет отличать предметы от окружающего фона на основе неодинаковой яркости).

Адаптация – способность глаза проявлять световую чувствительность при различной освещенности. Позволяет сохранять высокую светочувствительность и одновременно предохранять фоторецепторы сетчатки от перенапряжения. 2 вида адаптации:

а) световая адаптация – проявляется при повышении уровня освещенности, наиболее интенсивно протекает в течение первых сек, затем она замедляется и заканчивается к концу 1-ой мин. При резком увеличении уровня освещенности может сопровождаться защитной реакцией зажмуривания.

б) темновая адаптация – проявляется при понижении уровня освещенности, световая чувствительность нарастает в течение 20-30 мин, затем нарастание замедляется и только к 50-60 мин достигается максимальная адаптация.

Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности. Чем более резок перепад освещенности, тем длительнее адаптация.

Методы определения светоощущения:

1) наблюдение за действием обследуемого в затемненном помещении – предлагают сесть на стул, подойти к аппарату и т.д.

2) проба Кравкова-Пуркинье – на углы куска черного картона 20Х20 см наклеивают четыре квадратика размером 3Х3 из голубой, красной, желтой и зеленой бумаги. Цветные квадратики показывают больному в затемненной комнате на расстоянии 40-50 см от глаза. В норме через 30-40 сек становится различим желтый квадрат, затем голубой. При нарушении светоощущения на месте желтого квадрата появляется светлое пятно, а голубой квадрат не выявляется.

3) исследование на адаптометре – используется для точной количественной характеристики световой чувствительности. Исследование начинается с предварительной световой адаптации к определенному уровню освещенности. Адаптация длится 10 мин и создает идентичный для всех обследуемых нулевой уровень. Затем свет выключают и с интервалами в 5 мин на матовом стекле, расположенном перед глазами обследуемого, освещают только контрольный объект (круг, крест, квадрат). Освещенность конкретного объекта увеличивают до тех пор, пока его не увидит обследуемый. С 5-и мин интервалом обследование длится 50-60 мин. По мере адаптации исследуемый начинает различать контрольный объект при более низком уровне освещенности. Результаты исследования вычерчивают в виде графика, на которых по оси абсцисс – время исследования, по оси ординат – оптическую плотность светофильтров, регулирующих освещенность объектов: чем плотнее светофильтры, тем ниже освещенность объекта и тем выше светочувствительность глаза.

Расстройство светоощущения - гемералопия (куриная слепота) – расстройство сумеречного зрения, может быть

1) симптоматической – связана с поражением фоторецепторов сетчатки при органических заболеваниях сетчатки, сосудистой оболочки, зрительного нерва (глаукома, невриты, пигментные дегенерации). Как правило, сочетается с изменением глазного дна и поля зрения.

2) функциональной – развивается в связи с гиповитаминозом А, сочетается с образованием ксеротических бляшек на конъюнктиве вблизи лимба.

3) врожденной – семейно-наследственное заболевание неясной этиологии, не сопровождается изменениями на глазном дне

lektsia.com

Методы исследования цветоощущения.

С этой целью применяют две группы методов — пигментные с использованием цветных (пигментных) таблиц и различных тест-объектов, например кусочков картона разного цвета, и спектральные (с помощью аномалоскопов). Принцип исследования по таблицам основан на различении среди фоновых кружочков одного цвета цифр или фигур, составленных из кружков той же яркости, но другого цвета. Лица с расстройством цветового зрения , различающие в отличие от трихроматов, объекты только по яркости, не могут определить предъявляемые им фигурные или цифровые изображения. Из цветных таблиц наибольшее распространение получили полихроматические таблицы Рабкина, основная группа которых предназначена для дифференциальной диагностики форм и степени врожденных расстройств цветового зрения и отличия их от приобретенных. Существует также контрольная группа таблиц — для уточнения диагноза в сложных случаях.

При выявлении нарушений цветового зрения используют также стооттеночный тест Фарнсуорта — Мензелла, основанный на плохом различении цвета протанопами, дейтеранопами и тританопами в определенных участках цветового круга. От испытуемого требуется расположить в порядке оттенков ряд кусочков картона разного цвета в виде цветового круга; при нарушении цветового зрения кусочки картона располагаются неправильно, т.е. не в том порядке, в каком они должны следовать друг за другом. Тест обладает высокой чувствительностью и дает информацию о типе нарушения цветового зрения. Используется также упрощенный тест, в котором используют всего 15 цветных тест-объектов.

Более тонким методом диагностики расстройств цветового зрения является аномалоскопия — исследование с помощью специального прибора аномалоскопа. Принцип работы прибора основан на трехкомпонентности цветового зрения.Сущность метода заключается в уравнении цвета двухцветных тестовых полей, из которых одно освещается монохроматическим желтым цветом, а второе, освещаемое красным и зеленым, может менять цвет от чисто-красного до чисто-зеленого. Обследуемый должен подобрать путем оптического смешения красного и зеленого желтый цвет, соответствующий контрольному (уравнение Релея). Человек с нормальным цветовым зрением правильно подбирает цветовую пару смешением красного и зеленого. Человек с нарушением цветовым зрением с этой задачей не справляется. Метод аномалоскопии позволяет определить порог цветового зрения раздельно для красного, зеленого, синего цвета, выявить нарушения цветового зрения , диагностировать цветоаномалии. Степень нарушения цветоощущения выражается коэффициентом аномальности, который показывает соотношения зеленого и красного цветов при уравнении контрольного поля прибора с тестовым. У нормальных трихроматов коэффициент аномальности колеблется от 0,7 до 1,3, при протаномалии он меньше 0,7, при дейтераномалии — больше 1,3.

Методы исследования светоощущения.

Абсолютную световую чувствительность определяют с помощью адаптометров Нагеля, Белостоцкого — Гофмана в процессе темновой адаптации в течение 50—60 мин, предъявляя каждые 5 мин контрольные объекты с различным уровнем освещенности. Результаты исследования вычерчивают в виде графика , на котором по оси абсцисс откладывают время исследования, а по оси ординат –оптическую плотность светофильтров, регулирующих освещенность увиденного в данном исследовании объекта. Эта величина и характеризует светочувствительность : чем плотнее светофильтры , тем ниже освещенность объекта и тем выше светочувствительность . Для ускоренного исследования сумеречного зрения и темновой адаптации применяют прибор Кравкова — Вишневского, принцип действия которого основан на использовании феномена Пуркинье. В условиях пониженной освещенности пациенту предлагают рассматривать объекты четырех цветов — желтого, красного, зеленого и голубого. В норме через 30—40 с становится различимым желтый квадрат, потом голубой. При нарушении светоощущения на месте желтого квадрата пациент начинает различать светлое пятно через 50—60 с, голубой квадрат не выявляется. За рубежом получили распространение адаптометры Хартингера, никтоматы. Статическая периметрия : в заранее выбранных точках поля зрения (50-100 и более) предъявляют неподвижные объекты переменной величины и яркости. Это не только повышает вероятность обнаружения дефектов поля зрения, но и позволяет судить об абсолютной и различительной световой чувствительности в различных участках сетчатки.

Преимущества и недостатки периметрии.

Основным достоинством периметрии является проекция поля зрения не на плоскость , а на вогнутую сферическую поверхность , концентричную сетчатке. Благодаря этому исключается искажение границ поля зрения .Перемещение объектов на определенное число градусов по дуге даст равные отрезки , а на плоскости их величина неравномерно увеличивается от центра к периферии .

Периметрия одним объектом позволяет дать только качественную оценку периферического зрения , довольно грубо отделяя видимые участки от невидимых. Боле точную характеристику поля зрения можно получить с помощью количественной (квантитативной) периметрии. Метод позволяет улавливать патологические изменения поля зрения на ранних стадиях заболевания, когда обычная периметрия не выявляет отклонений от нормы. Статическая периметрия : в заранее выбранных точках поля зрения (50-100 и более) предъявляют неподвижные объекты переменной величины и яркости. Это не только повышает вероятность обнаружения дефектов поля зрения, но и позволяет судить об абсолютной и различительной световой чувствительности в различных участках сетчатки. Автоматическая периметрия позволяет избежать кропотливой работы и случайных результатов.

Картина нормального глазного дна.

Глазное дно при офтальмологическом исследовании с обычным источником света имеет красный цвет. Интенсивность окраски зависит в основном от количества ретинального (в сетчатке) и хориоидального (в сосудистой оболочке) пигмента. На красном фоне глазного дна выделяются диск зрительного нерва, желтое пятно и сосуды сетчатки. Диск зрительного нерва располагается кнутри от центральной части сетчатки и имеет вид четко очерченного бледно-розового круга или овала диаметром около 1,5 мм. В самом центре диска в месте выхода центральных сосудов почти всегда отмечается углубление — так называемая сосудистая воронка; в височной половине диска иногда имеется чашеобразное углубление (физиологическая экскавация), которое в отличие от патологического углубления занимает лишь часть диска.

Из центра диска зрительного нерва или немного кнутри от него выходит центральная артерия сетчатки (ветвь глазной артерии) в сопровождении расположенной кнаружи от нее одноименной вены. Артерия и вена делятся на две главные ветви, идущие вверх и вниз. Нередко разделение центральной артерии сетчатки происходит еще в стволе зрительного нерва за глазным яблоком, в этом случае верхняя и нижняя ветви ее проявляются на глазном дне раздельно. Верхние и нижние артерии и вены на диске или недалеко от него разветвляются на более мелкие. Артериальные и венозные сосуды сетчатки отличаются друг от друга: артериальные сосуды — более тонкие (соотношение калибра артериол и венул сетчатки равно 2:3) и более светлые, менее извитые. Чрезвычайно важное значение при осмотре глазного дна имеет область желтого пятна с центральной ямкой, расположенного кнаружи от височной границы диска зрительного нерва. Желтое пятно выделяется более темной окраской и имеет форму горизонтально расположенного овала. В центре желтого пятна просматривается темное круглое пятнышко — ямочка.

Методы исследования хрусталика и стекловидного тела.

Биомикроскопия глаза — метод визуального исследования оптических сред и тканей глаза, основанный на создании резкого контраста между освещенными и неосвещенными участками; позволяет осмотреть конъюнктиву, роговицу, радужку, переднюю камеру глаза, хрусталик, стекловидное тело, а также центральные отделы глазного дна (биомикроофтальмоскопия).

Биомикроскопию глаза осуществляют при помощи щелевой лампы (стационарной или ручной), основными частями которой являются осветитель и увеличительное устройство (бинокулярный стереоскопический микроскоп или лупа). На пути светового пучка находится щелевая диафрагма, позволяющая получить вертикальную и горизонтальную осветительные щели. С помощью измерительного окуляра стереоскопического микроскопа определяют глубину передней камеры глаза; дополнительная рассеивающая линза силой около 60 дптр, нейтрализующая положительное действие оптической системы глаза, дает возможность исследовать глазное дно.

Исследование проводят в темной комнате, чтобы создать резкий контраст между затемненными и освещенными лампой участками глазного яблока. Максимально раскрытая щель диафрагмы обеспечивает диффузное освещение, позволяющее осмотреть все участки переднего отдела глаза, узкая щель — светящийся оптический «разрез». При совмещении пучка света с наблюдаемым участком глаза получается прямое фокальное освещение, наиболее часто применяемое при биомикроскопии глаза и позволяющее установить локализацию патологического процесса При фокусировании света на хрусталике определяется его оптический срез в форме двояковыпуклого прозрачного тела. В срезе четко выделяются поверхности хрусталика, а также сероватые овальные полосы — так называемые зоны раздела, обусловленные различной плотностью вещества хрусталика. Изучение оптического среза хрусталика позволяет установить точную локализацию начинающегося помутнения его вещества, оценить состояние капсулы.

При биомикроскопии стекловидного тела в нем выявляются не различимые при других методах исследования фибриллярные структуры (остов стекловидного тела), изменения которых свидетельствуют о воспалительных или дистрофических процессах в глазном яблоке.

При биомикроскопии глаза применяют и другие виды освещения. Непрямое освещение (исследование в темном поле), при котором наблюдаемый участок освещается лучами, отраженными от более глубоких тканей глаза, позволяет хорошо рассмотреть сосуды, участки атрофии и разрывы тканей. Для осмотра прозрачных сред используют освещение проходящим светом и метод зеркального поля, что способствует выявлению незначительных неровностей роговицы, детальному исследованию поверхности капсулы хрусталика и др. Осмотр глазного дна производят также в лучах спектра (биомикрохромоофтальмоскопия).

lektsia.com